Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene.

نویسندگان

  • Richard J Bennett
  • Mathew G Miller
  • Penelope R Chua
  • Mary E Maxon
  • Alexander D Johnson
چکیده

It is now well established that mating can occur between diploid a and alpha cells of Candida albicans. There is, however, controversy over when, and with what efficiency, nuclear fusion follows cell fusion to create stable tetraploid a/alpha cells. In this study, we have analysed the mating process between C. albicans strains using both cytological and genetic approaches. Using strains derived from SC5314, we used a number of techniques, including time-lapse microscopy, to demonstrate that efficient nuclear fusion occurs in the zygote before formation of the first daughter cell. Consistent with these observations, zygotes micromanipulated from mating mixes gave rise to mononuclear tetraploid cells, even when no selection for successful mating was applied to them. Mating between different clinical isolates of C. albicans revealed that while all isolates could undergo nuclear fusion, the efficiency of nuclear fusion varied in different crosses. We also show that nuclear fusion in C. albicans requires the Kar3 microtubule motor protein. Deletion of the CaKAR3 gene from both mating partners had little or no effect on zygote formation but reduced the formation of stable tetraploids more than 600-fold, as determined by quantitative mating assays. These findings demonstrate that nuclear fusion is an active process that can occur in C. albicans at high frequency to produce stable, mononucleate mating products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microtubule motor protein Kar3 is required for normal mitotic division and morphogenesis in Candida albicans.

The kinesin-related protein Kar3 is a minus end-directed molecular motor that plays a multifunctional role in microtubule-directed nuclear movement. Previously, it was shown that Candida albicans Kar3p is critical for nuclear fusion during mating as kar3 mutants were defective in karyogamy. In this study, we confirm that Kar3p is required for nuclear congression in mating but that neither Kar3p...

متن کامل

Role of transcription factor Kar4 in regulating downstream events in the Saccharomyces cerevisiae pheromone response pathway.

Yeast Kar4 is a putative transcription factor required for karyogamy (the fusion of haploid nuclei during mating) and possibly other functions. Previously known to be required only for the transcriptional induction of KAR3 and CIK1, microarray experiments identified many genes regulated by Kar4 in both mating and mitosis. Several gene clusters are positively or negatively regulated by mating ph...

متن کامل

Fig1 facilitates calcium influx and localizes to membranes destined to undergo fusion during mating in Candida albicans.

Few mating-regulated genes have been characterized in Candida albicans. C. albicans FIG1 (CaFIG1) is a fungus-specific and mating-induced gene encoding a putative 4-transmembrane domain protein that shares sequence similarities with members of the claudin superfamily. In Saccharomyces cerevisiae, Fig1 is required for shmoo fusion and is upregulated in response to mating pheromones. Expression o...

متن کامل

Cell biology of mating in Candida albicans.

It was recently demonstrated that strains homozygous for either of the mating type-like loci MTLa and MTLalpha of Candida albicans undergo white-opaque switching and that expression of the opaque-phase phenotype greatly enhances mating between strains. Exploiting the latter property to obtain high-frequency mating, we have characterized the cell biology of the mating process of C. albicans. Emp...

متن کامل

Barrier activity in Candida albicans mediates pheromone degradation and promotes mating.

Mating in Candida albicans and Saccharomyces cerevisiae is regulated by the secretion of peptide pheromones that initiate the mating process. An important regulator of pheromone activity in S. cerevisiae is barrier activity, involving an extracellular aspartyl protease encoded by the BAR1 gene that degrades the alpha pheromone. We have characterized an equivalent barrier activity in C. albicans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 55 4  شماره 

صفحات  -

تاریخ انتشار 2005